GOTTFRIED WILHELM LEIBNIZ (1646-1716)

historia8_01-leibniz-webLeibniz es un sabio universal de espíritu fáustico, eminente como jurista, filólogo, historiador, teólogo, poeta, inventor, diplomático, naturalista y físico; egregio en todas las ramas del saber, sobre todo en Filosofía y Matemáticas.
Con inusitada capacidad para trabajar en todo lugar, momento y condición, Leibniz aunaba lectura, pensamiento y escritura en una vida errabunda, plena de actividad social, en la que su talento excepcional, carácter afable y optimista, don de gentes y poliglotía le relacionaron con los personajes más ilustres de Europa.

La Filosofía natural le lleva a estudiar Matemáticas. Bajo la orientación de Huygens lee con fascinación a los grandes matemáticos del siglo XVII y alcanza como autodidacta una gran erudición. Con Fermat, Descartes y Pascal alcanza un éxtasis mental.
historia8 02 leibniz caricatura web

Leibniz persiguió la idea de Lulio de un lenguaje simbólico universal –el Álgebra de la Lógica– para expresar todo pensamiento sin ambigüedad y resolver por cálculo lógico toda polémica o contencioso. Ello es el antecedente de la Lógica Matemática de Boole y Russell.
Como artífice de notaciones definitivas, Leibniz crea un universo matemático donde símbolos y términos son el soporte de conceptos y métodos. Destacan los índices como números indicando posición, que aplicó con genio a la Combinatoria, a famosas series infinitas y a la idea de determinante. Pero ha sido en el Cálculo Infinitesimal donde Leibniz, junto con Newton, dejó una huella eterna, al reducir la ingente casuística anterior de técnicas para problemas geométricos específicos a un cálculo operacional que unifica los métodos y resuelve de modo uniforme los problemas con eficaces algoritmos universales independientes de la estructura geométrica. La tangente a una curva depende de la razón entre las diferencias infinitesimales de ordenadas y abscisas, y el área depende de la suma de los rectángulos infinitesimales que la componen. El carácter inverso de suma y diferencia descubre el vínculo entre cuadratura y tangente y mediante el triángulo característico de Pascal y Barrow reduce la cuadratura a una antiderivación, con transformaciones operacionales equivalentes a la integración por partes y cambio de variable.
La amplitud intelectual de Leibniz podría proceder de muchas cabezas y lo que hizo en cada campo del saber podía haber llenado toda la vida de un sabio.

--------------------------------------------

El Triángulo característico o diferencial de Leibniz BCD


historia8_03-leibniz-web

 Para cada punto T de la curva, Leibniz considera los tres triángulos rectángulos: BCD (llamado característico), EFT y AET, de cuya semejanza entre ellos obtendrá importantes relaciones, que al considerar los lados de BCD como infinitesimales, deducirá los principales resultados sobre tangentes, cuadraturas y rectificación de curvas.

 

Extraído de la exposición virtual El Rostro Humano de las Matemáticas, en http://www.divulgamat.net